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Computation of the flow between two rotating coaxial disks : 
multiplicity of steady-state solutions 

By M. HOLODNIOK,? M. K U B f e E K  and V. HLAVLCEK 
Department of Chemical Engineering, Prague Institute of Chemical Technology, 

16628 Praha 6, Czechoslovakia 

(Received 12 February 1980 and in revised form 14 October 1980) 

A numerical investigation of the problem of rotating disks is made using the Newton- 
Raphson and continuation methods. The numerical analysis of the problem was 
performed for a sequence of values of the Reynolds number R and the ratio of angular 
velocities of both disks s. It was shown that for higher values of the Reynolds number 
it is necessary to use a large number of grid points. Continuation of the solution with 
respect to the parameter s indicated that a number of branches may exist. A detailed 
discussion for three selected values of s (s = - 1 ,  s = 0,  s = 1 )  is presented together 
with a detailed comparison of our calculations with results already published in the 
literature. 

1. Introduction 
The paper is a continuation of our previous work (Holodniok, KubiEek & HlavAGek 

1977). We shall consider only the steady-state description of the physical situation, 
the transient behaviour will be a subject of our next paper. 

The purposes of this paper are (i) to perform numerical calculation for higher values 
of the Reynolds number and to test the capability of the finite-difference approach; 
(ii) for a given value of the Reynolds number to calculate the dependence of the 
solution on the value of the parameters; and (iii) to compare our calculations with the 
results published in the literature. 

The steady-state formulation of the problem is (' = d / d t )  

F n  = RIHF' + R(F2 - G2 + k ) ,  
G" = 2RFG +- RtG'H, 
H' = -2RtF. 

The boundary conditions are 

I F(0)  = H ( 0 )  = 0, 

F ( l )  = H ( 1 )  = 0,  

G(0) = 1 ,  

G(1) = S. 

Here s is a parameter which represents the ratio of velocities of both disks, - 1 < s < 1 ,  
and R is the Reynolds number. We have to calculate the profiles F(E), G ( 0 ,  H ( 5 )  for 
l~ [0,1] and the nonlinear eigenvalue Ic, which fulfil equations ( 1 )  and ( 2 ) .  

The problem of the flow of a viscous fluid between two rotating disks has been a 
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subject of many papers. Unfortunately the governing equations have been written in 
different variables. Table 1 is presented in order to make it possible to transform the 
results between different formulations. 

We shall show that for higher values of the parameter R a large number of solutions 
can be found. The dependence on the parameter 8 is presented for one selected value 
of the Reynolds number. The results obtained will be discussed in connection with the 
calculations published in the literature. 

2. Computational method 
A number of different numerical methods have been'adapted tosolve the problem of 

two infinite rotating disks. A discussion of these techniques has been published recently 
(Holodniok et al. 1977). From this discussion it may be inferred that for higher values 
of R the most powerful approach is the finite-difference method. The simple- 
shooting method fails; however, the multiple-shooting algorithm has been success- 
fully used by Pesch & Rentrop (1978) for values ranging up to R = 20000. 

The finite-difference approximation of equations (1) and (2), used in this study, has 
been described in our previous paper (Holodniok et al. 1977). The derivatives are 
replaced by three-point difference formulae ; the error of approximation is O(h2),  
where h = 1/n is the step used for finite-difference formulae. The finite-difference 
approximation is represented by a system of 3(n - 1) + 1 nonlinear algebraic equations 
with almost seven-diagonal structural matrix. The Newton-Raphson method has 
been used to solve this system for particular values of the parameters R and s. By using 
the Newton-Raphson method sequentially we can obtain a dependence of the solution 
on R. Let us discuss an appropriate number of the grid points for different values of R. 
For higher values of R it is necessary to consider the results with some care. Such a 
situation is depicted in figure 1, where the dependence of k on R for different n is 
presented. This figure reveals that for R > 1000 the results obtained for n = 100 and 
n = 200 are different. For R > 4000 it is desirable to use n = 400 for certain branches. 
The detailed situation is demonstrated on figure 2, where two further branches, 
7 and 9, of the solution are presented. We can expect that for R > 1000 a grid having 
n = 800 is not sufficient. We can, however, obtain a parasitic solution for higher R 
and low n (cf. branch 7, n = 100, R N 5000), which for higher n disappears. It is our 
opinion that for higher values of R the multiple-shooting technique is the best method 
(cf. Schlehoferov6, Holodniok & KubiEek 1981). We shall perform a systematic 
analysis of a dependence of .the solution on the parameter s. The value of R was fixed 
at R = 625, because for low values of R it is not necessary to use a very dense grid and 
n = 200 is sufficient. Moreover, with increasing R the number of solutions increases 
and the overall picture can be very complex. Let us note that the seven branches drawn 
in figures 1 and 2 do not represent all solutions of the problem for R = 625; a more 
complete pattern of all branches calculated can be found for s = 0 .8  (see figure 3). 

3. Multiplicity and characteristic features of the solution in dependence on s 

The dependence of k on s for R = 625 is presented in figure 3. Individual branches 
are numbered according to the order in which they have been obtained. The numbers of 
the first seven branches coincide with the numbering in figures 1 and 2. 
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FIQURE 1.  Dependence of k on the Reynolds number, s = 0.8. The effect of n (step size used for 
finite-difference approximation). - - -, n = 100; . . . , ?Z = 200;-, n = 400. 

Let us study some features of the solution for s = 1 and s = - 1.  For s = 1 we have 
the trivial solution of the problem 

H(6)  = 0,  P([) = 0, G(E) = 1, k = 1 (3) 

(see branch number 1 in figure 3). Suppose that there exists a non-trivial solution 
H ( [ ) ,  F ( [ ) ,  G(t), k for s = 1. Then the functions 

F([) = F(l-[) ,  d ( [ )  = G(1-[), A(5) = H(1-[), k = k (4) 

are also a solution of the problem for s = 1. Similarly, suppose that there is a solution 
H ( [ ) ,  F ( t ) ,  G(g) ,  k for s = - 1. Then the functions 

P ( [ )  = F(1-[), d( [ )  = -G(l-[), A([ )  = -H( l - [ ) ,  L = k (5) 

satisfy equations (1) and (2) for s = - 1, too. 
We can take advantage of equations (4) or (5) towards a construction of a new 

solution for s = 1 or s = - 1, if the new solution is different from the original one. If 
A = H, F = F ,  d = G, then the solutions will be referred to as the symmetrical profile. 
Let us note that by using relations (4) branches 1 0 , 1 4 , 3  and 11 arise from branches 7, 
9 , 2  and 5 for s = 1, respectively. Analogously, by using relations (5) we have obtained 
branches 14, 6, 12, 13, 17 and 19 from branches 9, 3, 1, 10, 15 and 18 for s = - 1 ,  
respectively (cf. figure 3). We incur computational problems in trying to calculate 
branches 13 and 11 (branch 11 is very close to branch 5 in figure 3 for SEEO-9, 11). 
We were not able to cross the limit points on these branches by using successive 
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FIGURE 2. Dependence of k on the Reynolds number, s = 0.8. The effect of n. 
-, n = 100; . . ., n = 200; ---, n = 400; -. - .  -,n = 800. 

changing of s and the finite-difference approach for fixed value of s. However, another 
procedure allowed us to compute branches 16,15,18 and 20 after calculating branches 
1 1, 13, 17 and 19, respectively. This proceduze consisted in using the finite-difference 
approach for a fixed value of k and evaluating the dependence s = s ( k ) .  

For s = 0.8 we calculated ten solutions; the branches 1-5 are continued in R in 
figure 1 only. 

Mellor, Chapple & Stokes (1968) have pointed out that a cellular solution may exist. 
A cell is defined as a region between two neighbouring zero points of the function 
H ( < )  that represents the axial component of the flow velocity. If H ( < )  < 0 then the 
fluid flows towards the lower disk, for H ( 5 )  > 0 the fluid flows to the upper disk. As a 
result the fluid cannot flow between cells. Each solution is characterized by the 
number of cells. Table 2 shows that the number of cells can change on a particular 
branch. 

The function F(5)  represents a radial component of the velocity. For F ( 5 )  < 0 the 
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-1-0 -0.5 0.0 0.5 1 -0 

FIGURE 3. Dependence of k on the parameter s, R = 625. 
s 

fluid flows to the axis of the system (suction at the axis), for F ( f )  > 0 an outflow from 
the axis occurs. The angular component of the velocity is characterized by G ( [ ) .  For 
G ( [ )  > 0 the fluid rotates in the same direction as the lower disk, for G ( [ )  < 0 an 
opposite rotation results. Below we show the profiles El([) ,  F ( [ )  and G ( [ )  on individual 
branches in figure 3 for three values ofs. The following selectedvalues of s represent the 
most interesting situation from the physical point of view: 

( a )  s = 1, both disks rotate with the same angular velocity (cf. figures 4a-g). The 
trivial solution (3) (branch 1)  is not presented; 

(b)  s = 0, one disk does not rotate (cf. figures 5a-h); 
( c )  s = - 1, both disks rotate with the same angular velocity but in opposite 

directions (cf. figures 6a-h). 
Double-precision arithmetic ( N 15 decimal digits) has been used for all computations. 
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Branch Number 
(cf. figure 3) Region 8 of cells 

1 

2 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

1.0 to -0.4 
-0.45 t o  -0.6 
-0.65 to - 1.0 
1.0 to 0.2 
1.0 to - 1.0 

1.0 to 0.165 

1.0 to 0.15 
0.1 to -0.1 

- 0.15 to - 0.36 

-0.17 to - 1.0 

1.0 to 0.7 

0.6 t o  0.2 
0.15 to -0.1 

-0.15 
-0.2 to - 0.36 
-0.2 to - 1.0 

1.0 to - 1.0 

1.0 to -0.85 
-0.9 to - 1.0 

1.0 to 0.851 

0.65 

1-0 
0.95 

0.9 to - 1.0 

- 0.896 65 to - 0.9 - 0.95 to  - 1.0 

1.0to -1.0 

- 0,89665 to - 1.0 

1.0 
0.95 to 0.851 

- 0.858 to - 1.0 
-0.858 to - 1.0 

- 0.859 to - 1.0 

- 0.9 to - 1-0 
- 0.859 to - 0.9 

1 
3 
2 
2 

2 

2 
2 
3 
2 

2 

2 
4 
3 
1 
3 
2 

2 
1 

2 
4 

2 

6 
4 
2 
2 
4 

1 

2 

4 
2 

2 
2 
2 
4 
2 

TABLE 2. Numbers of cells on different branches for 
certain regions of s; R = 625. 

The grid number n = 400 has been adapted and all profiles are correct in the scale of the 
figures. Comments of the behaviour of the system are presented in the legends to the 
figures. Let usnote that, for s = 1 and s = - 1 and asymmetrical solutions, there exist 
also solutions constructed by using relations (4) and (5 ) .  The construction of stream- 
lines is described in the paper by Batchelor (1951) and it is not difficult to draw the 
streamlines for individual cases. 
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LEGENDS TO FIGURES 4, 5 AND 6 

FIGURE 4. Resulting profiles for s = 1. ( a )  Branch 3, k = -0.056366, two cells. By using (4) 
we can obtain the solution for branch 2. A part of the fluid rotates with an opposite angular 
velocity; both disks behave as centrifuges; the outflow is not uniform; the flow is higher at one 
disk. ( b )  Branch 4, k = - 0-002 663, two cells. Both disks behave as centrifuges; the fluid rotates 
only in a boundary layer; outside the boundary layer only a radial and axial flow results. 
(c) Branch 5, k = 0.020168, two cells. By using (4) we can obtain the solution for branch 11. 
A part of the fluid rotates with an opposite angular velocity. A boundary layer appears at both 
disks with an outflow in radial direction. (d) Branch 9, k = 1.983 135, one cell. By using (4) we 
can obtain a solution for branch 14. The fluid rotates between very narrow boundary layers with 
high velocity. Rotation of the disks exerts only a weak effect on the behaviour of the fluid. One 
disk behaves as a centrifuge with an inflow in the axial direction; a t  the second disk the fluid is 
sucked. ( e )  Branch 10, k = 2.346506, two cells. By using (4) we can obtain a solution for branch 7. 
Near one disk a layer of fluid exists which rotates with higher opposite velocity than both disks. 
The fluid is sucked in the radial direction and then flows out. (f) Branch 12, k = 2.738047, 
six cells. There are layers rotating rapidly and in opposite directions at both disks. Between 
these layers the fluid rotates like a rigid body. ( 9 )  Branch 16, k = 0.023509, four cells. Both 
disks behave as centrifuges; in the middle layer the fluid rotates with an opposite angular 
velocity and an outflow in the radial direction results. 

FIGURE 5. Resulting profiles for s = 0. (a)  Branch 1, Ic = 0-098 264, one cell. The fluid is sucked 
near the standing disk and flows in the radial direction. The rotating disk behaves as a centrifuge. 
(6) Branch 3, k = -0.053848, two cells. The fluid rotates in the opposite direction near the 
standing disk and in the middle layer. A narrow boundary layer arises at the rotating disk where 
the disk behaves as a centrifuge. A radial inflow occurs in the middle layer and there is a radial 
outflow near the standing disk. (c) Branch 5, k = 0.006 760, three cells: a similar situation t o  that 
in ( b ) .  (d) Branch 7, k = 0.015 180, one cell. The fluid rotates in the opposite direction near the 
standing disk ; nevertheless, the situation is similar to that in (a). There is a different behaviour 
in the middle layer where radial outflow and inflow take place. ( e )  Branch 9, k = 0.000040, one 
cell. The rotating disk behaves as a centrifuge in a narrow boundary layer. The rest of the fluid 
does not rotate, only radial flow results. (f) Branch 10, k = 2.205886, two cells. The fluid 
rotates in the opposite direction near the rotating disk. This effect causes a boundary layer 
analogously to figure 4(e) .  (9) Branch 12, k = 20251744, two cells. A layer rotating rapidly and 
in the opposite direction is constituted near the rotating disk. The rest of the fluid rotates as a 
rigid body. (h) Branch 14, k = 1.983 135, one cell. The velocitia are so high that the situation 
is very similar to that in figure 4 (d) .  The influence of the upper disk can be neglected. 

FIGURE 6. Resulting profiles for s = - 1. ( a )  Branch 1, k = 2.530180, two cells. By using (5) 
we can obtain the solution on branch 12. The fluid rotates in the opposite direction near one disk 
(cf. figure 5g). Near the second disk the fluid is almost standing. ( b )  Branch 3, k = - 0.057678, 
two cells. By using ( 5 )  we can obtain a solution on branch 6. The situation is similar to figure 
4(a) ,  only the angular velocity is different. (c) Branch 8, k = - 0.002956, two cells. Both disks 
behave as a centrifuge with an inflow in the radial direction. (d) Branch 9, k . =  1.983135, one 
cell. By using (5) we can obtain the solution on branch 14. This situation is analogous to 
figure 4(d). ( e )  Branch 10, k = 2.494857, four cells. By using (5) we can obtain a solution on 
branch 13. A layer of fluid rotating in the opposite direction is constituted near both disks. 
Solutions on branches 10 and 13 are for s = - 1 very similar. (f) Branch 15, k = 2.646086, two 
cells. By using (5) we can obtain a solution on branch 17. The fluid rotates in three layers with 
inflow and outflow in each of them. Near both disks a flow with an opposite angular velocity 
exists and an inflow near the disks occurs. ( 9 )  Branch 18, k = 2.548247, two cells. By using (5) 
we can obtain a solution on branch 19. The flow is analogous to that in (f). (h) Branch 20, 
k = 2.063 128, four cells. Near both disks the fluid rotates with an opposite angular velocity. The 
radial inflow occurs near both disks and an outflow in the middle layer results. 



238 M .  Holodniok, M .  Kubie'ek and V .  Hlavdc'ek 

4. Discussion 
Batchelor (1951) constructed for s = - 1 a solution which is composed of a boundary 

layer, a layer with constant angular velocity, an intermediate layer, a layer with 
constant angular velocity and a boundary layer. So far we have not observed this 
situation. In the case s 3 0 Batchelor supposed that the disk with higher angular 
velocity behaves as a centrifuge while at the slower disk a suction effect occurs; this 
prediction is in agreement with our results (see figure 5 a).  He assumed that for higher 
values of the Reynolds number the fluid between boundary layers will rotate with a 
constant angular velocity (cf. figure 5a) .  

Stewartson (1953) compared Batchelor's conclusions with experiments. He used a 
power-series expansion (in R) to solve the boundary-value problem in question. Our 
results, presented in figures 6 (c) and 5 ( e ) ,  are analogous to the results obtained by 
Stewartson. 

Lance & Rogers (1962) described for s = 0.5 and R E [1, 1691 a situation when a layer 
of an almost stagnant fluid is surrounded by two boundary layers. Their calculations 
are related to our results in figures 5 (a )  and 6 (c) for s = 0 and s = - 1, respectively. 

Pearson (1965) obtained for s = 0,  R = 100 and 1000 solutions which are analogous 
to our figure 5(a ) .  For s = - 1 and R = 100 he obtained a symmetrical solution (cf. 
figure 6c);  for R = 1000 he found a solution where the main part of the fluid rotates 
with a higher angular velocity than that of the particular disks (cf. figure 6b), 
branch 6).  Mellor et al. (1968) solved the problem for s = 0 and calculated the depen- 
dence of the solution on the Reynolds number R. They found branches of the solution 
where two one-cell (cf. figure 5a), one two-cell and one three-cell (cf. figure 5c) 
configurations occur. Rasmussen (1971) and Tam (1969) solved the problem analytic- 
ally, their results can be compared with our calculations only in a qualitative way. 
Greenspan (1971) analysed the problem for different values of parameters; for s = - 1 
and R = 1000 and 2000 there is a discrepancy between his results and the calculations 
of McLeod & Parter (1974). The corrected results which correspond to our figure 6 (c )  
are presented in a later work (Schultz & Greenspan 1974). McLeod & Parter analysed 
the problem for s = - 1 theoretically. They supposed a priori the symmetry of the 
solution. Their conclusions are in agreement with our results when the profiles are 
symmetrical. Unfortunately, the solutions can also be non-symmetrical and thus their 
theory cannot be used in these cases. The profiles presented for lower values of R 
(R = 100) by Barrett (1975) are identical with our results. The solution obtained by 
Nguyen, Ribault & Florent (1975) can be compared for the case of s = 0;  they obtained 
for R = 500 and R = 1000 a solution of Batchelor (cf. figure 5 a )  and Stewartson 
(cf. figure 5 e )  type. The conclusion of Nguyen et al. was that the solution of 
Batchelor type is dynamically stable. 

For s = - 1, Pesch & Rentrop (1978) assumed symmetry of the profiles and calcu- 
lated the solution within the halved interval. Their results agree with figure 6(c).  
For s = 0 Roberts & Shipman (1976) calculated a dependence of the solution on R. 
They obtained the branches calculated by Mellor et al. (1968) and found that the 
number of cells was constant on one particular branch. 

There is a related problem which has been studied in the literature, namely the 
problem of only one rotating disk. Let us mention a t  least the papers by Dijkstra & 
Zandbergen (1976) and Zandbergen (1980), where twoand infinitely many solutions of 
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the problem have been obtained, respectively. It would also be interesting to answer 
the question on the relation between the solutions for the one-disk and two-disk 
problems. 

All solutions we have found are drawn in the figures. A description of each individual 
situation is presented in the legends to figures 4 , 5  and 6. We have obtained a number of 
qualitatively different steady-state solutions of the problem. The stability of these 
solutions has not been tested; it will be the subject of our next paper.We have shown 
that a majority of the results published in the literature are consistent with our calcu- 
lations. The results of the calculations indicate that for higher values of the Reynolds 
number the situation is quite complicated and that a great number of different 
branches exist. It is an open question whether or not we have evaluated all the possible 
branches for R = 625. We feel that there is a possibility that certain solutions have not 
yet been discovered. The results of our calculations revealed that with higher values of 
R the number of solutions increases. 

A detailed analysis of the problem of finite disks with respect to the existence of 
multiple steady states has not yet been presented. Recently a preliminary analysis of 
finite disks has been published (Bodonyi & Stewartson 1977; Szeri & Adams 1978). In  
future work we should like to show the effect of finite dimensions of rotating disks on 
the qualitative behaviour of the problem considered. With respect to  experimental 
evidence of complex hysteresis behavjour oftwo rotating cylinders (Coles 1965) it  can 
be expected that, for rotating fluids, multiple steady states may occur. 

The authors express their thanks to Dr Miroslava SchlehoferovB for her assistance 
in computations. 
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